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ABSTRACT 

This paper presents an efficient and robust method 
for registration of terrain models created using stereo 
vision on a planetary rover. Our approach projects two 
surface models into a virtual depth map, rendering the 
models as they would be seen from a single range sensor. 
Correspondence is established based on which points 
project to the same location in the virtual range sensor. 
A robust norm of the deviations in observed depth is used 
as the objective function, and the algorithm searches for 
the rigid transformation which minimizes the norm. An 
initial coarse search is done using rover pose information 
from odometry and orientation sensing. A fine search is 
done using Levenberg-Marquardt. Our method enables a 
planetary rover to keep track of designated science targets 
as it moves, and to hand off targets from one set of stereo 
cameras to another. These capabilities are essential for the 
rover to autonomously approach a science target and place 
an instrument in contact in a single command cycle. 

I. INTRODUCTION 

Single cycle instrument placement (SCIP) is the single 
greatest autonomy need for the next generation of Mars 
rovers, such as the planned 2009 MSL rover mission to 
Marsl. The goal of SCIP is to enable a planetary rover 
to approach and place an instrument on a scientifically 
interesting point on the terrain from a distance of 10 
meters[l], [2] .  This must happen within one command 
cycle, so that after an operator selects a science target 
and uploads a command, the next response from the 
rover is the requested science measurement from the 
target. Single cycle instrument placement will significantly 
increase science return per unit of operational time over 
the stop and move, human-in-the-loop operation of the 
Sojourner and MER rovers, which each require between 
3 and 5 command cycles to obtain the same data. 

The first step in SCIP is the navigation of the rover 
to a location that places the point of interest within the 
workspace of an arm which carries an instrument. Un- 
certainty about the exact target position and accumulated 
rover localization errors require that the rover actively 
keep track of where the target is in relation to itself as 
navigates towards it. Once positioned, the rover evaluates 

Fig. 1. Artist’s conception of 2009 Mars Smart Lander [JPL] 

the target to ensure the instrument can be safely placed 
and then moves it into place with the arm. This can require 
handing the target o f f  from the cameras used to track it 
in the approach phase to the cameras used for close up 
inspecti& and positioning of the arm. 

Terrain model registration can solve both the target 
tracking and target hand-off problems. Tracking is done 
by registering successively acquired terrain models of the 
target area to the initially acquired model of the target. 
Tracking also provides information about rover motion 
between views. Hand-off is done by registering the target 
models from two different sensors. 

This paper focuses on the problem of terrain model reg- 
istration. The method presented in this paper uses stereo 
vision to build 3D terrain models, then uses an algorithm 
similar to ICP to find the rigid transformation which 
aligns two models. An important difference between the 
method presented here and ICP is the use of a sensor 
model which projects the two views into a virtual range 
sensor. Using a rendering model removes the need to 
search for corresponding points with a distance heuristic. 
A robust error metric is then minimized, reducing the 
effect of outliers in the stereo models. A coarse search 
for the minimum is performed using a correlation based 
strategy which uses partial knowledge of rover motion. A 
fine search is performed using a general purpose robust 
estimation algorithm. 
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11. PREVIOUS WORK 

The Iterated Closest Point (ICP) algorithm was intro- 
duced by Chen and Medioni[3] and Besl and McKay[4] to 
recover a rigid transformation between two point clouds 
with unknown correspondence. The method relies on two 
steps. The first uses a nearest neighbor heuristic to estab- 
lish correspondence between points. The second computes 
the rigid transformation between the point clouds. When 
only two point clouds are being aligned, the second step 
is computed in closed form. 

A good summary of ICP and its extensions can be found 
in a recent survey[5]. An important extension to ICP is 
an objective function which uses the distance between a 
vertex in one model and the nearest point on the surface 
of the other model, rather than the nearest vertex[6]. 
This objective function does not penalize for motion of 
corresponding points along the surface. 

Methods other than ICP have also been used 
for model registration, including the Expectation- 
Maximization algorithm[7], and nonlinear optimization 
with robust M-estimators[S]. The latter approach is at- 
tractive for several reasons. Fitzgibbon showed that be- 
sides increasing the robustness of the solution to outliers 
in the data, using Levenberg-Marquardt to minimize a 
robust norm converges to a solution rapidly and has a 
significantly larger basin of attraction than least squares. 
For these reasons, robust estimation with Levenberg- 
Marquardt is used in this work. 

. 

111. APPROACH 

This section describes the technical approach used for 
terrain model registration. The approach relies on three 
key parts. The first is a sensor model which predicts the 
observations that should be seen under a hypothesized 
transformation for the surface models. The sensor model 
used here is a virtual range sensor, which is a reasonable 
approximation to the stereo system used to measure the 
shape of the terrain. The sensor model allows us to write 
an objective function which depends on the difference 
between what is observed and what is expected under the 
hypothesis. 

The second part is a coarse search based on approx- 
imate knowledge of position and orientation. Assuming 
a fixed orientation, the virtual range sensor axes specify 
a coordinate frame over which a 2D correlation search 
can be performed. The coarse search finds an approximate 
translation which is closer to the alignment than the initial 
guess based on odometry. - 

The third part is a fine search based on Levenberg- 
Marquardt (LM) nonlinear optimization[9], along with 
an extension which incorporates robust estimation using 
iteratively reweighted least squares (IRLS)[ lo], [ 111. The 
robust optimization method is used to minimize the ob- 
jective function and recover the alignment of the terrain 
models. 

Q' 
Fig. 2. 
corresponding mesh facet into a virtual range sensor. 

Each pixel in the range image is predicted by rendering the 

A. Sensor model 
Stereo processing results in a range image consisting 

of a depth estimate for every pixel in the rover stereo 
cameras. These depth estimates are combined to produce 
a 3D Eode! of the surfxe. If two mode!s of a surface 
are made from different locations, the rigid transformation 
that aligns the two models can be used to determine the 
coordinate transformation between views. 

The surface models are represented by triangulated 
meshes with vertices v and v'. If the two 3D models 
contain some region of overlap, there is a rigid trans- 
formation that aligns the overlapping regions. The goal 
of registration is to find the rigid transformation that 
aligns the model v with the model v'. We represent the 
transformation using the parameter p = (z, y, t, , , )T 
corresponding to 3 translational and 3 rotational degrees 
of freedom. There are many ways to represent rotations; 
we choose Euler angles for simplicity. Singularities in 
the representation are not an issue since roll and pitch 
angles for our rover are naturally constrained to be within 
tolerable physical limits. 

These parameter p defines a 4 4 transformation matrix 
T,. If p is the parameter describing the transformation 
between surfaces v and v', then for every pair of corre- 
sponding points v, and < the relationship 

V: = Tpv, (1) 

hoids. With real observations this equalicy will not hold 
exactly. The approach taken in ICP is to minimize the 
Euclidean distance between the corresponding points. 

In this work, we project these two models into a virtual 
range sensor view and minimize the difference between 
the rendered depths at each point. The projection is done 
using a rendering operation which uses the hypothesized 
pose of a model in the camera coordinates to find the 
intersection of the surface of the terrain model and the rays 
corresponding to each pixel of the virtual range sensor. 
The range is then computed as the distance between the 
camera center and the intersection of the model surface 
and camera ray. 

The rendering takes O(n) operations, where n is the 
number of pixels in the virtual range sensor. For each 



3 

triangle on the mesh v', the vertices vi, v;, and <+ are 
projected onto the image plane. For every pixel inside that 
triangle, the location of the intersection of the camera ray 
li, and the facet of the mesh is a point s;, given by 

(2) 

with ai + aj + uk = 1. The depth to the intersection point 
is the length of the projection of the intersection point 
onto the camera ray, 

s; = aiv; + ujv; + akv; 

za = n, s; (3) 

The vector of all depths zi is denoted z. We fix the 
registration to use the coordinate frame of the surface 
model v' so that it does not move during registration. This 
means that z is a constant and can be computed once at 
the beginning of a registration. 

The depth to the point vi changes with p. Similarly to 
(2) and (3), we write 

si T,(aivi + ajvj + Q V ~ )  (4) 

ha(p) =nc si ( 5 )  
and 

The function h(p) is a vector containing all predicted 
depths. We define an objective function which is the sum 
of squared deviations between the projected depths 

(6) 
1 
2 Jz = -(z h(p)ITR '(2 h(p)) 

where R is the measurement covariance. The use of 
a rendering model eliminates the need to search for 
corresponding points. Correspondence between points is 
established directly by the rendering operation since uncer 
the current pose hypothesis, corresponding mesh points 
project to corresponding range image pixels. 

B. Coarse registration 
We can expect our rover to have approximate knowl- 

edge of translation and rotation between observations. 
Dead reckoning can provide rudimentary information 
about both translation and rotation. On relatively short tra- 
verses, errors in dead reckoning based purely on odometry 
on the K9 rover are on the order of 10 cm of translation 
and a few degrees of rotation in yaw per meter travelled. 
Our rover also has sensors which measure orientation 
directly, including an inclinometer and a sun tracker 
which together fully constrain the rover orientation. These 
sensors are accurate to withi  a few degrees regardless of 
distance travelled. 

Visual tracking methods often make use of brute-force 
correlation to find the 2D image plane location of a feature 
of interest. Searching for a 6dof rigid transformation 
using correlation is prohibitive, since evaluating every 
hypothesis on a 6D grid is expensive. However, if the 
orientation is approximately known, then 3 of the degrees 
of freedom can be eliminated, reducing the search to 3dof. 
Since a virtual range image is used to evaluate each pose 
hypothesis, we can also eliminate the search in the camera 

Fig. 3. Example correlation surface for coarse registration. 

z axis. For any translation parallel to the camera 2 y 
plane, the average or median z deviation can be computed 
and removed. This reduces the 6D search to 2D, making 
correlation feasible. 

The correlation proceeds as follows. The camera loca- 
tion and orientation are estimated using onboard sensors, 
and the orientation is fixed. A grid is established in the 
camera sensor plane as a set of translations z, and 
y,. The camera z coordinate of each translation is zero. 

The approximate camera orientation is then used to rotate 
these translations to world coordinates ( 2, y, z).  
For each translation hypothesis, the differences between 
corresponding pixels in the two rendered range images is 
computed. The median of these differences is found and 
subtracted out, and then the sum of absolute differences 
between the corrected range values is computed as a 
match score. The match score for each translation in the 
correlation grid is then interpreted as a correlation surface. 
The minimum value is chosen as the coarse match. An 
example correlation surface is shown in Figure 3. 

A grid size and grid spacing must be determined over 
which the correlation is to be computed. Our current 
implementation uses an 11 11 grid with a 10 cm spacing, 
which can compensate for translation errors of up to half 
a meter and find an initial coarse alignment that is within 
5 centimeters of the solution. 

C. Fine registration 

(6). LM requires the gradient and approximate Hessian 
The goal of our registration procedure is to minimize 

VpJ2 = HTR '(2 h(p)) 

VE Jz H ~ R  'H (7) 

p+p+(V;Jz+ I) 'V,Jz (8) 

to compute a parameter update 

The parameter ensures that (8) is well conditioned and 
takes an appropriate step. A more complete description 
of the LM algorithm is beyond the scope of this paper. 
Several useful descriptions exist[ 121, [9]. However, the 
Jacobian of the sensor model is specific to the application 
described here. 
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Fig. 4. 
the derivative of the vertex locations onto the surface normal. 

The Jacobian of the depth measurement is found by projecting 

The Jacobian H is the change in the rendered depth at 
each point with respect to a change in the transformation 
parameter p. Motion of the point si on a polygon can be 
decomposed into motion normal to the plane and motion 
parallel to the plane. Motion parallel to the plane does not 
change the depth. The depth only changes with motion 
normal to the plane. 

The change of the point si is described by ds i /dp ,  
which is a iinear combination of the derivatives d v j d p  
with the same coefficients used during rendering in (4). 
The projection of the derivative onto the surface normal 

The change in depth hi lies along the camera normal. Its 
projection onto the surface normal is 

dhi ~ ~ dhi 
- dP_L = n c  nsdp 

Equating the projections (9) and (10) we find 

The Jacobian H is the matrix containing all of the gradi- 
ents dhildp. 

D. Robust Estimation 
The Lz norm is optimal when the observation noise is 

Gaussian. However, the Lz norm may exhibit problems 
when it is not. For data which contains outliers, there 
are a family of norms () which are robust to large 
deviations. These are functions which have a bounded 
derivative far from zero, so that large deviations provide 
only a small contribution to the gradient of the objective 
function. The objective function used in this work uses 
the Huber norm[l 11, 

shown in Figure 5. When the deviation is close to zero, 
the Huber norm behaves similarly to the Lz norm. .When 
the deviation is large, the norm behaves similarly to L1. 
This norm has been shown to perform well for ICP[8]. 
Using the robust norm, we rewrite (6) as 

-.- L2 norm 
- Hubernorm 
- - Huber weight 

Fig. 5. 
in this work, and the weight function for weighted least squares. 

Comparison of the La norm and the Huber robust norm used 

and the derivatives as 

V p J ~  = HT R '(2 h(p)) 
VEJH = HT R 'H (14) 

where is a diagonal matrix of weights 

The weight function for the Huber norm is 

with c = 1.2107. The weights are recomputed during 
each iteration of Levenberg-Marquardt, resulting in an 
iteratively reweighted least squares algorithm. 

Iv. EXPERIMENTAL RESULTS 

To empirically validate the performance of the regis- 
tration for instrument placement, we tested our algorithm 
with a 4 meter traverse in the laboratory. A stereo image 
pair was captured using the navigation cameras on the 
mast of the K9 rover. A 3D model was computed and 
presented to an operator in the Viz visualization tool. 
The user specified a goal point on a rock. The selected 
instrument placement goal location is marked with a "+" 
in the left camera image shown in Figure 8. The rover 
moved 4 meters, stopping every meter to align the 3D 
model of the current view of the goal location with the 
3D model created from the initial view. At a distance of 
2 meters, the view switched from the navigation cameras 
on the mast to the hazard cameras on the underside of 
the rover chassis in order to provide a better view of the 
goal. This was accomplished using our target handoff by 
aligning views from the two different camera pairs. 

Figure 6 shows two 3D models. The red model is the 
initial 3D model computed using stereo vision from a 
distance of 4 meters. The arrow indicates the goal location 
selected by the rover operator. The textured model is 
the final view of the rock from the hazard cameras at 
a distance of 50cm. The misregistration is a result of 
errors in by dead reckoning, rover kinematics, pan tilt unit 
calibration, etc. Figure 7 shows the result of aligning the 
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Fig. 8. Selected goal location 

Fig. 9. Estimated goat location after registration 

initial model from the navigation cameras with the final 
model from the hazard cameras. 

The goal location on the rock can be recovered directly 
using the transformation which aligns the views, which is 
represented with an arrow in Figure 7. The final camera 
view of the goal is in Figure 9, with the estimated goal 
location indicated with a "+". This is the intended location 
for the instrument, which is placed using the algorithms 
described in[ 11. 

V. DISCUSSION 
Registration of 3D surface models is an attractive 

method for localization and target approach. As long as 
the lighting conditions permit the acquisition of images 
for stereo, the surface models and resulting registration 
results are independent of the lighting conditions. This 

is attractive compared to 2D approaches which might 
have difficulty with tracking features or recognizing places 
when lighting conditions change. We can also achieve 
bounded error in pose estimation with respect to the target 
location since the initial target model can be used as long 
as the target remains in view. 

Furthermore, 2D visual tracking requires the rover to 
spend computational effort on computations that it may 
be doing only for the purpose of visual pose estimation. 
However, NASA's current plans call for stereo vision 
to be used for hazard avoidance on MER in 2003 and 
probably on MSL in 2009. Registering the 3D models that 
are already created for local path planning and obstacle 
avoidance makes dual use of data that is being generated 
anyway. The marginal computation for registration is less 
than the computation required for building the 3D models 
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Fig. 6. Terrain models before registration. 

Fig. 7. Terrain rnodeEs after registration. 

in the first place, so most of the computational work is 
already done. 

The robust estimation method used in this paper works 
quite well. The surface models used in the examples 
here were not regularized, resampled, or “cleaned in any 
way and the results are sti l l  promising. Other reported 
approaches require mesh regularization and cleaning in 
order to ensure that meshes have similar resolu9ons and 
there are no outliers before minimizing a norm which is 
sensitive to large deviations. These steps may improve 
the results we can acheive using robust estimation but 
empirically are not required for it to work. 

Algorithmically, our technique compares well to ICP. 
The rendering operation takes O(n) where n is the number 
of pixels in the virtual range image. The resolution of 
the virtual range image can be changed to speed up 
the algorithm with a corresponding loss in performance 
due to lack of detail in the models. Levenberg-Marquardt 
updates require O(n) to construct and multiply matrices, 
but the computation of the update to the parameter is 
constant time since the number of dimensions in the 
parameter vector is fixed at 6. In terms of convergence, the 
approaches have similar properties since each converges 
to a local minimum and will find the global optimum if 
the initial guess is within the basin of attraction. We have 
not yet done experiments to determine what that basin 
might look like for the different methods. but we have 
empirically noticed that the basin of attraction is larger for 
the robust norm than for least squares. We are working on 
a more thorough empirical comparison of our technique 
to ICP, and in the mean time we have also made our 
3D terrain data public for interested readers to use for 

.. 

comparison with other techniques[ 131. 
We are currently working to further extend this work. 

Algorithmically we are investigating ways to optimize 
the implementation, perhaps making use of some efficient 
rendering techniques. We would also like to extend this to 
multiview registration in order to handle more than two 
views at a time. 

This method is being incorporated into a larger demon- 
stration of single cycle instrument placement for improved 
efficiency of planetary rovers and increased science return 
for future Mars missions. 
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